2,394 research outputs found

    GIRK2 and GABABR1 Downregulate in Response to TTX as GIRK2, GABABR1, and GABABR2 Are Not Affected by BC Treatment

    Get PDF
    Homeostatic plasticity is the response neurons undergo to regulate changes in excitability levels and bring the cells back to homeostasis. Research on homeostatic plasticity at the molecular level can lead to improved treatments for neurological diseases such as epilepsy, Alzheimer\u27s, and schizophrenia. The research featured in this poster looks at the response of GIRK (G protein-gated inwardly rectifying potassium) channels and GABAb (gamma-amniobutyric acid) receptors to neurotoxins, tetrodotoxin (TTX) or bicuculline (BC). Prolonged activity blockade of 48 hour TTX treatment significantly reduced GABABR1 and GIRK2 expression. This supports the idea that because these two proteins inhibit action potentials, there will be fewer of them found in the cell to offset the inhibition caused by TTX. However, there was no change in expression for GABABR2. In order to function, GABABR2 and GABABR1 rely on one another. Perhaps the decrease in GABABR1 expression is enough to offset the inhibition by TTX. Prolonged activity excitation of 48 hour BC treatment resulted in no significant change for GABABR1, GABABR2, and GIRK2 expressions. Although their expressions may not have changed, it is possible that their activity could still be increased

    Heterozygous Deletion of Epilepsy Gene KCNQ2 Has Negligible Effects on Learning and Memory

    Get PDF
    Neuronal Kv7/Potassium Voltage-Gated Channel Subfamily Q (KCNQ) potassium channels underlie M-current that potently suppresses repetitive and burst firing of action potentials (APs). They are mostly heterotetramers of Kv7.2 and Kv7.3 subunits in the hippocampus and cortex, the brain regions important for cognition and behavior. Underscoring their critical roles in inhibiting neuronal excitability, autosomal dominantly inherited mutations in Potassium Voltage-Gated Channel Subfamily Q Member 2 (KCNQ2) and Potassium Voltage-Gated Channel Subfamily Q Member 3 (KCNQ3) genes are associated with benign familial neonatal epilepsy (BFNE) in which most seizures spontaneously remit within months without cognitive deficits. De novo mutations in KCNQ2 also cause epileptic encephalopathy (EE), which is characterized by persistent seizures that are often drug refractory, neurodevelopmental delay, and intellectual disability. Heterozygous expression of EE variants of KCNQ2 is recently shown to induce spontaneous seizures and cognitive deficit in mice, although it is unclear whether this cognitive deficit is caused directly by Kv7 disruption or by persistent seizures in the developing brain as a consequence of Kv7 disruption. In this study, we examined the role of Kv7 channels in learning and memory by behavioral phenotyping of the KCNQ2+/− mice, which lack a single copy of KCNQ2 but dos not display spontaneous seizures. We found that both KCNQ2+/− and wild-type (WT) mice showed comparable nociception in the tail-flick assay and fear-induced learning and memory during a passive inhibitory avoidance (IA) test and contextual fear conditioning (CFC). Both genotypes displayed similar object location and recognition memory. These findings together provide evidence that heterozygous loss of KCNQ2 has minimal effects on learning or memory in mice in the absence of spontaneous seizures

    Pig-to-Nonhuman Primate (NHP) Naked Islet Xenotransplantation

    Get PDF
    Islet transplantation is an established therapy for selected type 1 diabetes (T1D) patients with severe hypoglycemic unawareness and glycemic liability despite of insulin treatment. However, the donor organ is limited. Porcine islets are the best alternative source to overcome this limitation, and pig-to-nonhuman primate (NHP) naked islet xenotransplantation studies are being performed worldwide. Several studies including our own have presented successful proof-of-concept results based on immunosuppression regimen including the anti-CD154 monoclonal antibody. Particularly, long-term control of diabetes by adult porcine islet transplantation has been demonstrated in five consecutive monkeys, and the longest survival was ~1000 days after transplantation. Currently, pig-to-NHP islet xenotransplantation based on clinically applicable immunosuppression regimen is being pursued. In this chapter, we will describe all the procedures of pig-to-NHP naked islet xenotransplantation: (1) the porcine islet isolation from designated pathogen-free (DPF) miniature pigs, (2) diabetes induction in monkeys, (3) transplantation procedure via the portal vein, (4) immune monitoring comprising humoral and cellular immunity after porcine islet transplantation, and finally (5) liver biopsy and subsequent immunohistochemical procedure in detail

    Analytical Modeling of Rheological Postbuckling Behavior of Wood-Based Composite Panels Under Cyclic Hygro-Loading

    Get PDF
    This study was conducted to develop analytical models to predict postbuckling behavior of woodbased composite panels under cyclic humidity conditions. Both the Rayleigh method and von Karman theory of nonlinear plate with imperfection were used to obtain a closed form solution to the hygrobuckling and postbuckling. In addition, mechano-sorptive creep effects were also taken into account for the derivation of analytical models. The closed-form solutions derived for both isotropic and orthotropic materials showed a good agreement with the experimental results in terms of the center deformation of hardboard, especially in the case of the edge movements. The unrecovery deformation was much greater at the first cycle and then decreased as the number of cyclic hygro-loading increased

    Identifying KIF Subtype that Mediates Axonal Targeting of Kv7 Channels

    Get PDF
    Early-onset Benign Familial Neonatal Epilepsy (BFNE) and Epileptic Encephalopathy (EE), are associated with mutations in neuronal KCNQ/Kv7 channel subunits Kv7.2 and Kv7.3. Kv7 channels are voltage-dependent potassium channels. Enriched at the axonal plasma membrane, they pump potassium ions out of the neurons and inhibit repetitive or burst firing of action potentials. A single neuronal Kv7 channel is a heterotetramer composed of two Kv7.2 and two Kv7.3 subunits. BFNE and EE mutations in Kv7.2 and Kv7.3 lead to decreased surface expression along the axon, which means less potassium ions are moved across the axonal membrane where action potentials are generated and propagated. This prevents the neuron from returning to its resting potential and allows repetitive action potentials indicative of a seizure. The purpose of this project is to uncover the molecular mechanism by which Kv7 channels are targeted to the axonal surface and enriched at the axonal initial segment (AIS). Since epilepsy mutations in Kv7 channels reduce this axonal targeting, understanding the mechanism underlying axonal targeting could provide therapeutic targets to treat epilepsy. Two motor proteins KIF3A and KIF5B are shown to target other potassium channels such as Kv1 to the axon. Here, we are investigating to test if overexpression of KIF3A and KIF5B proteins will lead to increased surface expression of neuronal Kv7 channels in the axon of hippocampal neurons

    Homeostatic regulation of extracellular signal-regulated kinase 1/2 activity and axonal Kv7.3 expression by prolonged blockade of hippocampal neuronal activity

    Get PDF
    Homeostatic plasticity encompasses the mechanisms by which neurons stabilize their synaptic strength and excitability in response to prolonged and destabilizing changes in their network activity. Prolonged activity blockade leads to homeostatic scaling of action potential (AP) firing rate in hippocampal neurons in part by decreased activity of N-Methyl-D-Aspartate receptors and subsequent transcriptional down-regulation of potassium channel genes including KCNQ3 which encodes Kv7.3. Neuronal Kv7 channels are mostly heterotetramers of Kv7.2 and Kv7.3 subunits and are highly enriched at the axon initial segment (AIS) where their current potently inhibits repetitive and burst firing of APs. However, whether a decrease in Kv7.3 expression occurs at the AIS during homeostatic scaling of intrinsic excitability and what signaling pathway reduces KCNQ3 transcript upon prolonged activity blockade remain unknown. Here, we report that prolonged activity blockade in cultured hippocampal neurons reduces the activity of extracellular signal-regulated kinase 1/2 (ERK1/2) followed by a decrease in the activation of brain-derived neurotrophic factor (BDNF) receptor, Tropomyosin receptor kinase B (TrkB). Furthermore, both prolonged activity blockade and prolonged pharmacological inhibition of ERK1/2 decrease KCNQ3 and BDNF transcripts as well as the density of Kv7.3 and ankyrin-G at the AIS. Collectively, our findings suggest that a reduction in the ERK1/2 activity and subsequent transcriptional down-regulation may serve as a potential signaling pathway that links prolonged activity blockade to homeostatic control of BDNF-TrkB signaling and Kv7.3 density at the AIS during homeostatic scaling of AP firing rate

    Disentangled representation learning for multilingual speaker recognition

    Full text link
    The goal of this paper is to learn robust speaker representation for bilingual speaking scenario. The majority of the world's population speak at least two languages; however, most speaker recognition systems fail to recognise the same speaker when speaking in different languages. Popular speaker recognition evaluation sets do not consider the bilingual scenario, making it difficult to analyse the effect of bilingual speakers on speaker recognition performance. In this paper, we publish a large-scale evaluation set named VoxCeleb1-B derived from VoxCeleb that considers bilingual scenarios. We introduce an effective disentanglement learning strategy that combines adversarial and metric learning-based methods. This approach addresses the bilingual situation by disentangling language-related information from speaker representation while ensuring stable speaker representation learning. Our language-disentangled learning method only uses language pseudo-labels without manual information.Comment: Interspeech 202
    • …
    corecore